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3Leonard de Vinci Pôle Universitaire, Finance Lab, 92916 Paris La Défense, France
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We investigate the problem of estimating a given real symmetric signal matrix C from a noisy

observation matrix M in the limit of large dimension. We consider the case where the noisy measure-

ment M comes either from an arbitrary additive or multiplicative rotational invariant perturbation.

We establish, using the Replica method, the asymptotic global law estimate for three general classes

of noisy matrices, significantly extending previously obtained results. We give exact results concern-

ing the asymptotic deviations (called overlaps) of the perturbed eigenvectors away from the true

ones, and we explain how to use these overlaps to “clean” the noisy eigenvalues of M. We provide

some numerical checks for the different estimators proposed in this paper and we also make the

connection with some well known results of Bayesian statistics.

I. INTRODUCTION

One of the most challenging problem in modern statistical analysis is to extract a true signal from noisy

observations in data sets of very large dimensionality. Be it in physics, genomics, engineering or finance,

scientists are confronted with datasets where the sample size T and the number of variables N are both

very large, but with an observation ratio q = N/T that is not small compared to unity. This setting

is known in the literature as the high-dimensional limit and differs from the traditional large T , fixed

N situation (i.e. q → 0), meaning that the classical results of multivariate statistics do not necessarily

apply.

However, when one deals with very large random matrices (such as covariance matrices), one expects the

spectral measure of the matrix under scrutiny to exhibit some universal properties, which are independent

of the specific realization of the matrix itself. This property is at the core of Random Matrix Theory

(RMT), which provides a very precise description of the convergence of the spectral measure for a very

large class of random matrices. Perhaps the two most influential results are Wigner’s semicircle law [1]

and Marčenko and Pastur’s theorem [2]. As far as inference is concerned, the latter result is arguably

the cornerstone result of RMT in the sense that it gives theoretical tools to understand why classical

estimators are insufficient and is now at the heart of many applications in this field (for reviews, see e.g.

[3], [4], [5] or [6] and references therein).

In this paper, we consider the statistical problem of a N ×N matrix C which stands for the unknown

signal that one would like to estimate from the noisy measurement of a N ×N matrix M in the limit of

large dimension N →∞. A natural question in statistics is to find an estimator Ĉ(M) of the true signal

C that depends on the dataset M we have. The true matrix C is unknown and we do not have any

particular insights on its components (the eigenvectors). Therefore we would like our estimator Ĉ(M)

to be constructed in a rotationally invariant way from the noisy observation M that we have. In simple

terms, this means that there is no privileged direction in the N -dimensional space that would allow one

to bias the eigenvectors of the estimator Ĉ(M) in some special directions. More formally, the estimator

construction must obey:

ΩĈ(M)Ω† = Ĉ(ΩMΩ†), (I.1)

for any rotation matrix Ω. Any estimator satisfying Eq. (I.1) will be referred to as a Rotational Invariant

Estimator (RIE). It is not difficult to see that in this case the eigenvectors of the estimator Ĉ(M) have

to be the same as those of the noisy matrix M. As we will show in Section II, this implies that the

best possible estimator Ĉ(M) depends on the overlaps (i.e. the squared scalar product) between the
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eigenvectors of C and those of M. These overlaps turn out to be fully computable in the large N limit,

using tools from Random Matrix Theory.

The study of the eigenvectors for statistical purposes is in fact quite a recent topic in random matrices.

For sample covariance matrices, such considerations have been studied in [7] and [8]. In the latter paper,

the notion of overlap and optimal (oracle) estimator are treated in great details. As far as we know, this

is the only paper in the literature where the oracle estimator is related to random matrices. Besides the

sample covariance matrix, the problem of the overlap for a Gaussian matrix with an external source (also

named as deformed Wigner ensemble) has been treated first in [9] and then reconsidered in a more general

setting in [10] using Dyson Brownian motions. However, no mention on how to clean the ’noisy’ matrix

has been given in [9, 10] and this is the gap we hope to fill for a broader class of random perturbations

in the present paper.

The outline of this paper is organized as follows. We introduce in Section II A some notations and show

that the optimal (oracle) RI estimator involves the overlaps between the eigenvectors of the signal matrix

C and its noisy estimate M. In section II B, we observe that a convergence result on the resolvent of M

not only gives us all the information about the eigenvalues, but also the eigenvectors. After motivating

the study of the resolvent of the measurement matrix M, we provide in section III explicit expressions

for three different perturbation processes. The first one is the case where we add a noisy matrix that is

free with respect to the signal C. The second model concerns multiplicative perturbations and includes

the sample covariance matrix of (elliptically distributed) random variables. We also reconsider the case

of the so-called ‘Information-Plus-Noise’ matrix that deals with sample covariance matrices constructed

from rectangular Gaussian matrices with an external source. The evaluation of the resolvent for each

model is based on the powerful but non-rigorous replica method (which has has been extremely successful

in various contexts, including RMT or disordered systems– see [11], or [12] for a more recent review). We

will see that the derivation of our results using replicas can be done without too much effort and one can

certainly imagine that our results can be proven rigorously, as was done in [13] for the resolvent or [8–10]

for the overlaps of covariance matrices and Gaussian matrices with external sources. We relegate all

these technicalities in various appendices and only give our final results and their numerical verifications

in section III. Note in passing that we obtain using replicas the multiplication law of the S-transforms

for product of free matrices (see Appendix B 3), a derivation that we have not seen in the literature

before. In section IV, we come back to the problem of statistical inference and apply the results of

section III to derive the optimal RIE for each considered model. In the multiplicative case, we recover

and generalize the estimator recently derived by Ledoit and Péché for covariance matrices [8]. Each

estimator is illustrated by numerical simulations, and we also provide some analytical formulas that can

be of particular interest for real life problems. We then conclude this work with some open problems and

possible applications of our results.

II. ROTATIONALLY INVARIANT ESTIMATORS, EIGENVECTOR OVERLAPS AND THE

RESOLVENT

A. The oracle estimator and the overlaps

Throughout this work, we will consider the signal matrix C to be a symmetric matrix of dimension N

with N that goes to infinity. We denote by c1 ≥ c2 ≥ · · · ≥ cN its eigenvalues and by |V1〉, |V2〉, . . . , |VN 〉
their corresponding eigenvectors. The perturbed matrix M will be assumed to be symmetric with eigen-

values denoted by λ1 ≥ λ2 ≥ · · · ≥ λN associated to the eigenvectors |U1〉, |U2〉, . . . , |UN 〉. In the limit

of large dimension, it is often more convenient to index the eigenvectors of both matrices by their cor-

responding eigenvalues, i.e. |Ui〉 → |Uλi〉 and |Vi〉 → |Vci〉 for any integer 1 ≤ i ≤ N , and this is the

convention that we adopt henceforth.

We now attempt to construct an estimator Ĉ(M) of the true signal C that relies on the given dataset

M at our disposal. It is well known that an estimator is optimal with respect to a specific loss function
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(e.g. the distance) and a standard metric is to consider the (squared) Euclidean (or Frobenius) norm

Tr
[
(C− Ĉ(M))2

]
.

The best estimator with respect to this loss function is the solution of the following minimization problem

Ĉ(M) = argmin
RIC(M)

∑
i,j

[Ci,j −C(M)i,j ]
2
, (II.1)

considered over the set of all possible RI estimators C(M). We have seen that the RI estimators C(M)

constructed from a given noisy observation matrix M restrict to the symmetric matrices that have the

same eigenvectors as M. Therefore, the only free variables in the constrained optimization problem (II.1)

are the eigenvalues of C(M) and we can rewrite

Ĉ(M) = U Λ̂U†, (II.2)

where the eigenvalues λ̂1, λ̂2, . . . , λ̂N are associated with the corresponding perturbed eigenvectors

|Uλ1〉, |Uλ2〉, . . . , |UλN 〉. We seek for the λ̂i that solve the above optimization program:

Λ̂ = argmin
{λ̂k}k∈RN

N∑
i,j=1

(
Ci,j −

N∑
k=1

Ui,kλ̂kUj,k

)2

, (II.3)

where the Ui,k denote the entries of the eigenvectors of M. A simple computation leads to the following

formulas for the λ̂i in terms of the overlaps between the perturbed |Ui〉, the non-perturbed eigenvectors

|Vj〉 and the eigenvalues of the true matrix C:

λ̂i = Tr

[
|Ui〉〈Ui|C

]
≡

N∑
j=1

〈Ui|Vj〉2cj . (II.4)

A few comments on this estimator are in order. First, the estimator λ̂i is designed to construct the best

RI estimator Ĉ(M) given in (II.2). The consequence is that if we restrict our estimator to have the

eigenvectors of the noisy matrix M, then the naive approach that consists in substituting1 the eigenvalues

{λ̂i}Ni=1 with the true ones {ci}Ni=1 yields to a spectrum that is too wide. Indeed, it is not hard to see from

(II.4) that the top eigenvalues are shrunk downward while the bottom ones are shrunk upward. In other

words, the empirical spectral density (ESD) of the λ̂i is narrower than the true one which shows that the

RI estimator cannot be attained by the “eigenvalues substitution” procedure independently proposed in

[5, 14], aside from the trivial case C = IN .

We will also see that the estimator λ̂i is self-averaging in the large N -limit (in the sense that it converges

almost surely, see section II B) and can thus be approximated with its expected value

λ̂i ≈
N∑
j=1

[
〈Ui|Vj〉2

]
cj .

where [·] denotes the expected value with respect to the random eigenvectors (|Ui〉)i of the matrix M.

We will sometimes use the following notation for the (rescaled) mean square overlaps

O(λi, cj) := N
[
〈Ui|Vj〉2

]
. (II.5)

Eqs. (II.4) and (II.5) are the quantities of interest in this paper. In Statistics, the optimal RI estimator

(II.4) is sometimes called the oracle estimator because it depends explicitly on the knowledge of the true

signal C. The “miracle” is that in the large N limit, and for a large class of problems, one can actually

express the oracle estimator in terms of the (observable) limiting spectral density (LSD) of M only.

1 Remember that we have ranked the eigenvalues.
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B. Relation between the resolvent and the overlaps

A convenient way to work out the overlap (II.5) is to study the resolvent of M, defined as GM(z) :=

(zIN −M)−1. The claim is that for z not too close to the real axis, the matrix GM(z) is self-averaging

in the large N limit so that its value is independent of the specific realization of M. More precisely,

this means that GM(z) converges to a deterministic matrix for any fixed value (i.e. independent of N)

of z ∈ C \ R when N → ∞. We will refer to this deterministic limit as the global law of GM(z) in the

following.

The relation between the resolvent and the overlapsO(λj , ci) is relatively straightforward. For z = λ−iη
with λ ∈ R and η � N−1, we have

GM(λ− iη) =

N∑
k=1

[
λ

(λ− λk)2 + η2
+ i

η

(λ− λk)2 + η2

]
|Uk〉〈Uk|.

If we take the trace of the above quantity, and take the limit η → 0 (after N →∞), it is well known that

one obtains the “density of states” (i.e. the LSD) ρM:

ImGM(λ− iη) ≡ Im
1

N
TrGM(λ− iη) = π ρM(λ), (II.6)

(see Appendix A). Similarly, the elements of ImGM(λ− iη) can be written for η > 0 as

〈Vi|ImGM(λ− iη)|Vi〉 =

N∑
k=1

η

(λ− λk)2 + η2
〈Vi|Uk〉2 . (II.7)

This latter quantity is also self-averaging in the large N limit (the overlaps 〈Vi|Uk〉2, k = 1, . . . , N with i

fixed display asymptotic independence when N → ∞ so that the law of large number applies here) and

we have

〈Vi|ImGM(λ− iη)|Vi〉 →
N→∞

∫
R

η

(λ− µ)2 + η2
O(µ, ci)ρM(µ)dµ .

where the overlap function O(µ, ci) is extended (continuously) to arbitrary values of µ inside the support

of ρM in the large N limit. Sending η → 0 in this latter equation, we finally obtain the following formula

valid in the large N limit

〈Vi|ImGM(λ− iη)|Vi〉 ≈ πρM(λ)O(λ, ci). (II.8)

Eq. (II.8) will thus enable us to investigate the overlaps O(λ, ci) in great details through the calculation

of the elements of the resolvent GM(z). This is what we aim for in the next section. We emphasize that

the different equations of the mean square overlaps O(λ, ci) below will be expressed in the basis where C

is diagonal without loss of generality (see Appendix B for more details).

III. OVERLAPS: SOME EXACT RESULTS

A. Free additive noise

The first model of noisy measurement that we consider is the case where the true signal C is corrupted

by a free additive noise, that is to say

M = C +OBO†, (III.1)

where B is a fixed matrix with eigenvalues b1 > b2 > · · · > bN with limiting spectral density ρB and O is

a random matrix chosen uniformly in the Orthogonal group O(N) (i.e. according to the Haar measure).
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This family of models has found several applications in statistical physics of disordered systems subject to

an external perturbation where the matrix M is interpreted as the Hamiltonian of the system, given by the

sum of a deterministic term and a random term [15]. A simple example is when the noisy matrix OBO†

is a symmetric Gaussian random matrix with independent and identically distributed (i.i.d.) entries,

corresponding to the so-called GOE (Gaussian Orthogonal Ensemble). By construction, the eigenvectors

of a GOE matrix are invariant under rotation.

It is now well known that the spectral density of M can be obtained from that of C and B using free

addition, see [16] and, in the language of statistical physics, [17]. The statistics of the eigenvalues of M

has therefore been investigated in great details, see [18] and [19] for instance. However, the question of

the eigenvectors has been much less studied, except recently in [9, 10] in the special case where OBO†

belongs to the GOE (see below).

For a general free additive noise, we show in Appendix B-2 that the global law estimate for the resolvent

reads in the large N limit:

GM(z) = GC(Z(z)) (III.2)

where the function Z(z) is given by

Z(z) = z −RB(GM(z)), (III.3)

and RB is the so-called R-transform of B (see Appendix A for a reminder of the definition of the different

useful spectral transforms).

Note that Eq. (III.2) is a matrix relation, that simplifies when written in the basis where C is diagonal,

since in this case GC(Z) is also diagonal. Therefore, the evaluation of the overlap O(λ, c) is straightforward

using Eq. (II.8). Let us define the Hilbert transform HM(λ) which is simply the real part of the Stieltjes

transform GM(λ− iη) in the limit η → 0. Then the overlap for the free additive noise is given by:

O(λ, c) =
β1(λ)

(λ− c− α1(λ))2 + π2β1(λ)2ρM(λ)2
, (III.4)

where c is the corresponding eigenvalue of the unperturbed matrix C, and where we have defined:
α1(λ) := Re [RB (HM(λ) + iπρM(λ))],

β1(λ) :=
Im [RB (HM(λ) + iπρM(λ))]

πρM(λ)
.

(III.5)

As a first check of these results, let us consider the normalized trace of Eq. (III.2) and then set

u = GM(z) = GC(Z(z)). One can find by using the Blue transform that we indeed retrieve the free

addition formula RM(u) = RC(u) +RB(u) when N →∞, as it should be.

Deformed GOE

As a second verification, we specialize our result to the case where OBO† is a GOE matrix such that

the entries have a variance equal to σ2/N . It is then well known that in this case RB(z) = σ2z, meaning

that Eq. (III.3) simply becomes Z(z) = z − σ2GM(z). This allows us to get a simpler expression for the

overlap:

O(λ, c) =
σ2

(c− λ+ σ2HM(λ))2 + σ4π2ρM(λ)2
, (III.6)

which is exactly the result derived in [9, 10] using other methods. In Fig (1), we illustrate this formula

in the case where C is an isotropic Wishart matrix of parameter q, by taking e.g. C = T−1HH† where

H is a symmetric matrix of size N × T filled with i.i.d. standard Gaussian entries and q = N/T . We set

N = 500, T = 1000, and take OBO† as a GOE matrix with variance 1/N . For a fixed C, we generate

1000 samples of M given by Eq. (III.1) for which we can measure numerically the overlap quantity. We

see that the theoretical prediction (III.6) agrees remarkably with the numerical simulations.
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FIG. 1: Computations of the rescaled overlap O(λ, c) as a function of c in the free addition perturbation. We

chose i = 250, C a Wishart matrix with parameter q = 0.5 and B a Wigner matrix with σ2 = 1. The black

dotted points are computed using numerical simulations and the plain red curve is the theoretical predictions Eq.

(III.4). The agreement is excellent. For i = 250, we have ci ≈ 0.83 and we see that the peak of the curve is in

that region. The same observation holds for i = 400 where ci ≈ 1.66. The numerical curves display the empirical

mean values of the overlaps over 1000 samples of M given by Eq. (III.1) with C fixed.

B. Free multiplicative noise and empirical covariance matrices

Our second model deals with multiplicative noise in the following sense: we consider that the noisy

measurement matrix M can be written as

M =
√
COBO†

√
C, (III.7)

where again C is the signal, B is a fixed matrix with eigenvalues b1 > b2 > · · · > bN with limiting density

ρB and O is a random matrix chosen in the Orthogonal group O(N) according to the Haar measure.

Note that we implicitly requires that C is positive definite with Eq. (III.7), so that the square root of C

is well defined.

An explicit example of such a problem is provided by sample covariance matrices (namely the Wishart

Ensemble [20]), which is of particular interest in multivariate statistical analysis. We shall come back

later to this application. The Replica analysis leads to the following systems of equations (see Appendix

B 3) for the general problem of a free multiplicative noise above, Eq. (III.7):

zGM(z) = Z(z)GC(Z(z)), (III.8)

with:

Z(z) = zSB(zGM(z)− 1), (III.9)

where SB is the so-called S-transform of B (see Appendix A) and GM is the normalized trace of GM(z).

The latter obeys, from Eq. (III.8), the self-consistent equation:

zGM(z) = Z(z)GC(Z(z)). (III.10)
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Again, Eq. (III.8) is a matrix relation, that simplifies when written in the basis where C is diagonal.

Note that Eqs. (III.10) and (III.9) allow us to retrieve the usual free multiplicative convolution, that is

to say:

SM(u) = SC(u)SB(u). (III.11)

This result is thus the analog of our result (III.2) in the multiplicative case. We refer the reader to the

appendix B 3 for more details. Note that for technical reasons we restrict B to have a normalized trace

that differs from zero.

With the global law estimate for the resolvent given by Eqs. (III.8) and (III.9) above, we can obtain

a general overlap formula for the free multiplicative noise case. Let us define the following functions
α2(λ) := lim

z→λ−i0+
Re

[
1

SB(zGM(z)− 1)

]
β2(λ) := lim

z→λ−i0+
Im

[
1

SB(zGM(z)− 1)

]
1

πρM(λ)
,

(III.12)

then the overlap O(λ, c) between the eigenvectors of C and M are given by:

O(λ, c) =
cβ2(λ)

(λ− cα2(λ))2 + π2c2β2(λ)2ρM(λ)2
. (III.13)

In order to give more insights on our results, we will now specify these results to some well-known

applications of multiplicative models in RMT.

Empirical covariance matrix

As mentioned previously, the most famous application of a model of the form (III.7) is given by the

sample covariance estimator that we recall briefly. Let us define the N × T observation matrix R that

comes from T independent and identically distributed samples Rt ≡ (Rt
1, . . . ,R

t
N ) with t ∈ [1, T ] and

we assume that each sample have zero mean. The N elements of Rt generally display some degree of

interdependence, that is often represented by the true (or also population) covariance matrix C, defined

as 〈Rt
iR

t′

j 〉 = Ci,jδt,t′ , where δt,t′ is the Kronecker symbol. As the signal C is unknown, the classical

estimator for the covariance matrix is to compute the empirical (or sample) covariance matrix thanks to

the Pearson estimator

M =
1

T
RR† =

√
C

1

T
XX†

√
C,

where X is a N × T matrix where all elements are i.i.d. random variables (i.e. their true covariance

matrix is the identity matrix). So this model is a particular case of the model (III.7) with B := T−1XX†.

The S transform of B = T−1XX† has an explicit form

SB(x) =
1

1 + qx
, q =

N

T
. (III.14)

Using our general results Eqs. (III.8) and (III.9), we obtain, in the basis where C is diagonal:

zGM(z) = Z(z)GC(Z(z)), with Z(z) =
z

1− q + qzGM(z)
. (III.15)

which is exactly the result found in [21] and also in [13] at leading order. We can therefore recover the

well-known Marčenko-Pastur equation [2] which gives a fixed point equation satisfied by the resolvent of

M in term of the resolvent of the true matrix C

zGM(z) = Z(z)GC(Z(z)), with Z(z) =
z

1− q + qzGM(z)
. (III.16)
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The expression of the limiting overlaps can be further simplified in this particular case

O(λ, c) =
qcλ

(c(1− q)− λ+ qcλHM(λ))2 + q2λ2c2π2ρM(λ)2
, (III.17)

and we recover, as expected, the Ledoit & Péché result established in [8]. As a conclusion, our result

generalizes the standard Marčenko & Pastur formalism to an arbitrary multiplicative noise term OBO†.

Elliptical ensemble

A slightly more general application of the model (III.7) is when we assume that the entries of Rt
i can

be written as the product of two independent sources Rt
i = σtξi,t. The {ξi,t} are characterized by the

true signal Ci,j = 〈ξi,tξj,t′〉δt,t′ and are generated independently from the same distribution at time t

that will be assumed to be Gaussian in our case. The {σt} are such that 〈σ2〉 = 1 and allows to add a

time-dependent volatility with a factor σt that is common to all variables at time t. This defines the class

of elliptical distributions and the most famous application is when the {σt} are drawn from a inverse-

gamma distribution which leads to the multivariate Student distribution [22] (see Sec. (IV B) below).

The corresponding empirical correlation matrix can be written as

M =
√
C

1

T
XΣX†

√
C, (III.18)

where Σ := diag(σ2
1 , σ

2
2 , . . . , σ

2
T ). This model has been subject to several studies in RMT, see e.g. [23]

[24], [25] or [26]. In all these works, the expression of the limiting Stieltjes transform of the spectral

density is quite complex, except for the case where C is the identity matrix. We find here that we can

in fact obtain a self-consistent expression for the global law estimate of the corresponding resolvent by

introducing the appropriate transforms. Our result not only generalizes the time-independent result of

[21] or [13], but it also provides a tractable equation for the limiting eigenvalues density.

Before stating the result for the elliptical model (III.18), one has to be careful with the S-transform

of B. Indeed, it is in fact more convenient to work with the “dual” matrix B∗ := T−1
√

ΣX†X
√

Σ in

order to use the free multiplication formula. We then obtain the S-transform of B∗ to finally express

the Stieltjes transform of GB∗ as a function GB, simply by noticing that B∗ has the same eigenvalues as

B and the additional zero eigenvalue with multiplicity T − N . The final result reads, after elementary

manipulations of the T-transform,

SB∗(x) =
x+ 1

x+ q
SB

(
x

q

)
. (III.19)

In a nutshell, applying the result Eq. (III.9) to the elliptical case leads to the result

Z(z) =
z

1− q + qzGM(z)
SΣ(q(zGM(z)− 1)) (III.20)

with Eq. (III.8) and (III.10) unchanged. With Eq. (III.20), our general result (III.10) extends the

Marčenko-Pastur to a time-dependent 2 framework. We also notice that we have a self-consistent equation

in GM(z) in Eq. (III.10) contrary to previous studies [24–26]. One can easily specialize the result of the

overlaps O(λ, c) to any λ and c as a function of the spectral measure of Σ. However, we do not find an

expression as tractable as Eq. (III.17).

Finally, let us now show that Eq. (III.10) can be useful for practical purposes in order to construct

non-trivial models. Suppose that C is an inverse-Wishart matrix (see section IV.B. for the definition

2 in the sense that the volatility depends on the observation time t.
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FIG. 2: Theoretical predictions of the density of states from Eq. (III.8) (red line) compared to simulated data

when C is a 500× 500 inverse-Wishart matrix (parameter κ = 0.2) and Σ is a white Wishart with q0 = 0.6. The

agreement of our theoretical estimate is excellent and differs strongly from the classical Marčenko-Pastur density

(blue dotted curve)

of this law) with parameter κ = 0.2 and define Σ to be a Wishart matrix of size T × T and parameter

q0 = 0.6. We follow the same numerical procedure as in the free additive noise case. We compare in Fig.

2 our theoretical result Eq. (III.10) with empirical simulations and the agreement is remarkable. The

same conclusion holds for the overlap (see Fig. 3).

Note that the results obtained in this section could be extended to the case where the diagonal matrix

Σ is not positive definite, for applications in regression analysis (see for example [27]).

C. Information-Plus-Noise matrix

The last model we will treat here is the so-called ‘Information-Plus-Noise’ family of matrix. In this

model, we suppose that at each time t, we observe a N -dimensional vector Rt = At + σXt where the

signal is contained in the vector At ∈ RN which is perturbed by an additive noise σXt ∈ RN . We will

assume that the entries of Xt are i.i.d. Gaussian random variables with zero mean and unit variance. In

the case where the number of samples T � N , the empirical covariance matrix defined as

M =
1

T
RR† =

1

T
(A + σX)(A + σX)† (III.21)

is a good estimator of 1
TAA† + σ2IN . This model is of particular interest in signal processing, in order

to detect the number of sources and their direction of arrival [28]. Another example of application of

this model comes from Finance where one may want to estimate the integrated covariance matrix from

high-frequency noisy observation Rt = At +Xt, where Xt plays the role of the microstructure noise [29].

As usual, in the case where T ∼ O(N), the empirical estimator cannot be fully trusted. The main

assumption of the model is as usual the convergence of the empirical density of eigenvalues of C :=

T−1AA† towards a limiting density ρC. The anisotropic global law of the Information-Plus-Noise matrix

reads, in a matrix sense:

GM(z) =
(
(zZ(z)− σ2(1− q))− Z(z)−1C

)−1
, (III.22)
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FIG. 3: Rescaled overlap NO(λ, c) as a function of cj in the free addition perturbation with N = 500. We chose

C as an inverse-Wishart matrix with parameter κ = 0.2 and Σ a Wishart matrix with q0 = 0.6. The black dotted

points are computed using numerical simulations and the plain curves are the theoretical predictions Eq. (III.13).

For i = 250 (resp. i = 400), we have ci ≈ 0.37 (resp. ci ≈ 1.48) and we see that the peak of the curve is in that

region for both value of i.

where we have defined

Z(z) = 1− qσ2GM(z). (III.23)

This global law result has already been obtained in a mathematical context by [30] for applications in

wireless communications and signal processing. However, it is satisfactory to see that the replica method

is able to reproduce this result. If we take the normalized trace of the above equation, we find that the

Stieltjes transform reads

GM(z) =

∫
dcρC(c)

z(1− qσ2GM(z))− σ2(1− q)− c
1−qσ2GM(z)

, (III.24)

which is the result obtained in [31]. As far as we understand, the authors of [30] did not discuss the

overlaps in the present context. The final expression for O(λ, c) is quite cumbersome, but again completely

explicit, and reads:

O(λ, c) =
qσ2α3(λ)(λα3(λ) + c)

[(1− qσ2HM(λ))(λα3(λ)− c)− α3(λ)σ2(1− q)]2 + (λα3(λ) + c)2q2σ4π2ρ2
M (λ)

, (III.25)

where now α3(λ) := (1− qσ2HM(λ))2 + q2σ4π2ρ2
M (λ).

For the sake of completeness, we provide a numerical example for the overlap (III.25) where A is a

Gaussian matrix of size N×T with q = 0.5 and N = 500 with variance 1. The perturbation is a Gaussian

noise of same size with σ = 1. The procedure is the same than in the previous section and we give a

numerical example in Fig. 4.
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FIG. 4: Rescaled overlap O(λ, c) as a function of cj in the information-plus-noise model with N = 500. We chose

A and X to be a N × T Gaussian matrix and T = 2N . The black dotted points are computed using numerical

simulations and the plain curves are the theoretical predictions Eq. (III.25). For i = 250 (resp. i = 400), we have

ci ≈ 0.83 (resp. ci ≈ 1.66) and we see that the peak of the curve is in that region for both value of i.

IV. OPTIMAL ROTATIONAL INVARIANT ESTIMATOR

The above resolvent and overlap formulas for various models of random matrices are the central results

of this study. Equipped with these results, we can now tackle the problem of the optimal RIE of the

signal C. Indeed, the high-dimensional limit N →∞, that allows one to reach some degree of universality.

First, we rewrte the RIE ((II.4)) as:

λ̂i =
N→∞

1

N

N∑
j=1

O(λi, cj)cj ≈
∫
dc ρC(c)O(λi, c)c.

Quite remarkably, as we show below, the optimal RIE can be expressed, in the three above cases, as a

function of the spectral measure of the observable (noisy) M only.

Let us however stress that the nonlinear “shrinkage” estimators λ̂i we obtain below are a priori valid

in the support of M only. An interesting problem for future research would be to extend the results

obtained here for the bulk eigenvalues to the spiked eigenvalues, also called outliers. Here, we assume

that there are no spikes and we perform the optimal RIE for each models.

A. Free additive noise

We now specialize the RIE and we begin with the free additive noise case for which the noisy measure-

ment is given by

M = C +OBO†.

It is easy to see from Eqs. (II.8) and (III.2) that:

λ̂i =
1

πρM(λi)
lim

z→λi−i0+
Im

∫
dc

ρC(c)c

Z(z)− c
=

1

NπρM(λi)
lim

z→λi−i0+
Im Tr [GM(z)C] , (IV.1)
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where Z(z) is given by Eq. (III.3). From Eq. (III.2) one also has Tr(GM(z)C) = N(Z(z)GM(z) − 1),

and using Eqs. (III.3) and (III.5), we end up with:

lim
z→λ−i0+

Im Tr [GM(z)C] = NπρM (λ) [λ− α(λ)− β(λ)HM(λ)] .

We therefore find the following optimal RIE nonlinear “shrinkage” function F1:

λ̂i = F1(λi); F1(λ) = λ− α1(λ)− β1(λ)HM(λ), (IV.2)

where α1, β1 are defined in Sect. III.A, Eq. (III.5). This result states that if we consider a model where

the signal C is perturbed with an additive noise (that is free with respect to C), the optimal way to ’clean’

the eigenvalues of M in order to get Ĉ(M) is to keep the eigenvectors of M and apply the nonlinear

shrinkage formula (IV.2).

Deformed GOE

Let us consider the case where OBO† is a GOE matrix. Using the definition of α1 and β1 given in Eq.

(III.5), the nonlinear shrinkage function is given by

F1(λ) = λ− 2σ2HM(λ). (IV.3)

Moreover, suppose that C is also a GOE matrix so that M is a also a GOE matrix with variance

σ2
M = σ2

C + σ2. As a consequence, the Hilbert transform of M can be computed straightforwardly from

the Wigner semicircle law and we find

HM(λ) =
λ

2σ2
M

.

The optimal cleaning scheme to apply in this case is then given by:

F1(λ) = λ

(
σ2
C

σ2
C + σ2

)
, (IV.4)

where one can see that the optimal cleaning is given by rescaling the empirical eigenvalues by the signal-

to-noise ratio. This result is expected in the sense that we perturb a Gaussian signal by adding a Gaussian

noise. We know in this case that the optimal estimator of the signal is given, element by element, by the

Wiener filter [32], and this is exactly the result that we have obtained with (IV.4). We can also notice

that the ESD of the cleaned matrix is narrower than the true one. Indeed, let us define the signal-to-noise

ratio SNR = σ2
C/σ

2
M ∈ [0, 1], and it is obvious from (IV.4) that Ĉ(M) is a Wigner matrix with variance

σ2
C × SNR which leads to

σ2
M ≥ σ2

C ≥ σ2
C × SNR, (IV.5)

as it should be.

As a second example, we now consider a less trivial case and suppose that C is a white Wishart matrix

with parameter q0. For any q0, it is well known that the Wishart matrix has nonnegative eigenvalues.

However, we expect that the noisy effect coming from the GOE matrix pushes some true eigenvalues

towards the negative side of the real axis. In Fig 5, we clearly observe this effect and a good cleaning

scheme should bring these negative eigenvalues back to positive values. In order to use Eq. (IV.3), we

use once again the free addition formula to find the following equation for the Stieltjes transform of M:

−q0σ
2GM(z)3 + (σ2 + q0 z)GM(z)2 + (1− q − z)GM(z) + 1 = 0,
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FIG. 5: Eigenvalues of the noisy measurement M (black dotted line) compared to the true signal C drawn from

a 500 × 500 Wishart matrix of parameter q0 = 0.5 (red line). We have corrupted the signal by adding a GOE

matrix with radius 1. The eigenvalues density of M allows negative values while the true one has only positive

values. The blue line is the LSD of the optimally cleaned matrix. We clearly notice that the cleaned eigenvalues

are all positive and its spectrum is narrower than the true one, while preserving the trace.

for any z = λ − iη with η → 0. It then suffices to take the real part of the Stieltjes transform GM(z)

that solves this equation3 to get the Hilbert transform. In order to check formula Eq. (IV.2) using

numerical simulations, we have generated a matrix of M given by Eq. (III.1) with C a fixed white

Wishart matrix with parameter q0 and OBO† a GOE matrix with radius 1. As we know exactly C,

we can compute numerically the oracle estimator as given in (II.4) for each sample. In Fig. (6), we see

that our theoretical prediction in the large N limit compares very nicely with the mean values of the

empirical oracle estimator computed from the sample. We can also notice in Fig. 5 that the spectrum

of the cleaned matrix (represented by the ESD in green) is narrower than the standard Marčenko-Pastur

density. This confirms the observation made in Sec. II A.

B. Free multiplicative noise

By proceeding in the same way as in the additive case, we can derive formally a nonlinear shrinkage

estimator that depends on the observed eigenvalues λ of M defined by

M =
√
COBO†

√
C.

Following the computations done above, we can find after some manipulations of the global law estimate

(III.8):

Tr (GM(z)C) = N(zGM(z)− 1)SB(zGM(z)− 1). (IV.6)

3 We take the solution which has a strictly nonnegative imaginary part
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FIG. 6: Eigenvalues according to the optimal cleaning formula (IV.4) (red line) as a function of the observed

noisy eigenvalues λ. The parameter are the same as in Fig. 5. We also provide a comparison against the naive

eigenvalues substitution method (black line) and we see that the optimal cleaning scheme indeed narrows the

spacing between eigenvalues.

Using the analyticity of the S-transform, we define the function γB and ωB such that:

lim
z→λ−i0+

SB(zGM(z)− 1) := γB(λ) + iπρM(λ)ωB(λ), (IV.7)

As a consequence, the optimal RIE (or nonlinear shrinkage formula) for the free multiplicative noise

model (III.7) reads:

λ̂i = F2(λi); F2(λ) = λγB(λ) + (λHM(λ)− 1)ωB(λ), (IV.8)

and this is the analog of the estimator (IV.2) in the multiplicative case.

Empirical covariance matrix

As a first application of the general result Eq. (IV.8), we reconsider the homogeneous Marčenko-Pastur

setting where B = 1
TXX†. We trivially find from the definition of the S-transform that (IV.7) yields in

this case:

γB(λ) =
1− q + qλHM(λ)

|1− q + qλ lim
z→λ−i0+

GM(z)|2
and ωB(λ) = − qλ

|1− q + qλ lim
z→λ−i0+

GM(z)|2
. (IV.9)

The nonlinear shrinkage function F2 thus becomes:

F2(λ) =
λ

(1− q + qλHM(λ))2 + q2λ2π2ρ2
M(λ)

, (IV.10)

which is precisely the Ledoit-Péché estimator derived in [8]. Let us insist once again on the fact that this

is the oracle estimator, but it can be computed without the knowledge of C itself, but only with its noisy
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version M. This “miracle” is of course only possible thanks to the N →∞ limit that allows the spectral

properties of M and C to become deterministically related one to the other.

Like in the additive case, we can give a pretty insightful application of the formula (IV.8) based on

Bayesian statistics once again. Let us suppose that C is a white inverse-Wishart matrix (i.e. C−1 is a

white Wishart matrix of parameter q). The eigenvalue distribution of C can then be computed exactly

by performing the following change of variable4 c = ((1− q)c)−1
in the Marčenko-Pastur density function

to get

ρC(c) =
κ

πc2

√
(c+ − c)(c− c−), with c± =

1

κ
[κ+ 1±

√
2κ+ 1] (IV.11)

with q = (2κ + 1)−1 and κ the hyper-parameter which is positive. From there, one can compute the

corresponding Stieltjes transform of C

GC(z) =
(1 + κ)z − κ± κ

√
(z − c+)(z − c−)

z2
, (IV.12)

and we can also compute the Stieltjes transform of the perturbed matrix M thanks to the Marčenko-

Pastur equation:

GM(z) =
z(1 + κ)− κ(1− q)±

√
(κ(1− q)− z(1 + κ))2 − z(z + 2qκ)(2κ+ 1)

z(z + 2qκ)
. (IV.13)

The reason why we insist on this matrix ensemble is that it plays a special role in multivariate statistics,

especially for estimating the covariance matrix because the famous linear shrinkage estimator [33] turns

out to be exact in this case, in the sense that it corresponds to the RIE as defined in the introduction.

We can recover this result within the present formalism. Indeed, the use of Eq. (IV.13) in the estimator

(IV.10) leads, after some computations, to:

F2(λ) = αλ+ (1− α), with α =
1

1 + 2qκ
. (IV.14)

This is the linear shrinkage estimator that tells us to replace the noisy eigenvalues by a linear combination

of the noisy eigenvalues and unity. Equivalently said, the estimator can be formally written in matrix

form as Λ̂ = αΛ + (1− α)IN .

Elliptical Ensemble

In this subsection, we now consider the elliptical model i.e.

B =
1

T
XΣX†,

for an arbitrary diagonal T × T matrix Σ. One immediately sees that the optimal shrinkage formula

(IV.8) will now depends on q = N/T and on the spectral measure of Σ, which prevents us to get a

tractable form as in the homogeneous Marčenko-Pastur case (IV.10). However, we we can definitely

expect to find a nonlinear shrinkage formula even when the signal is given by an Inverse-Wishart matrix.

The optimal cleaning scheme is therefore given by Eq. (IV.8) where we can explicitly compute the

S-transform of B using the free multiplication and Eq. (III.19) for any Σ. We illustrate this in Fig.

(7) where the eigenvalues of Σ are generated following Marčenko-Pastur density and we see that the

4 The factor 1 − q is such that TrC = N , which follows from the Marčenko-Pastur equation.
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FIG. 7: Eigenvalues according to the optimal cleaning formula (IV.8) (red line) as a function of the observed

noisy eigenvalues λ when C is an inverse-Wishart matrix (with parameter κ = 0.2 and the Σ = diag({σ2
t }t) is

distributed according the Marčenko-Pastur density (with parameter q0 = 0.5). We compare the result against

numerical simulations (blue points) and the agreement is excellent. We furthermore compute the optimal cleaning

scheme when Σ = IT (black dotted line) and we see that Σ allows one to go from linear to nonlinear shrinkage.

estimator (IV.8) clearly deviates from the linear shrinkage (IV.14).

As a second example, we consider the Student ensemble of correlation matrices [23] which has encoun-

tered some success in quantitative finance because it allows one to construct non-Gaussian correlated

data with a clear interpretation of the matrix Σ. We impose the {σ2
t }Tt=1 to be distributed according an

inverse-gamma distribution

ρΣ(σ2) =
1

Γ
(
µ
2

) exp

[
σ2

0

σ2

]
σµ0
σ1+µ

(IV.15)

where we set σ2
0 := (µ− 2)/2 and µ > 2 in order to have 〈σ2〉 = 1. Within such prescription, the sample

data Rt
i := σtξi,t, with 〈ξi,tξj,t′〉δt,t′ = Ci,j , is characeterized by the multivariate Student distribution of

parameters µ and N [22]. From a financial perspective, this parametrization can be useful as a model

where all individual stock returns are impacted by the same, time dependent scale factor σt that represents

the “market volatility” (see [34] for a discussion of this assumption). From empirical studies, one possible

choice that matches quite well the data is to choose Eq. (IV.15) with µ ≈ 3− 5. The results above allow

us to compute numerically either the LSD or the RIE for an arbitrary “true” signal C, thus generalizing

the work done in [23].

We plot in Fig. 8 the RIE (IV.8) when the eigenvalues of Σ are generated following the inverse-gamma

distribution with µ = 6 and C is still an inverse-Wishart matrix of parameter κ = 0.2. The numerical

procedure is the same as for the previous example. The results we obtain are quite convincing, especially

in the bulk. The noisy fluctuations for the largest eigenvalues in Fig. 8 can be explained by the difficulty

to solve Eq. (III.10) and (III.20) outside of the bulk, most nostably due to the inversion of the T-transform

of Σ. However, we see that these large eigenvalues still have the right behaviour in the sense that they

are shrunk downward compared to the “naive” substitution procedure.
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FIG. 8: Eigenvalues according to the optimal cleaning formula (IV.8) as a function of the noisy observed eigen-

values λ when C is an inverse-Wishart matrix (with parameter κ = 0.2) and the Σ = diag({σ2
t }t) is generated

according an inverse-gamma distribution (IV.15) (with parameter µ = 6). We compare the RIE (IV.8) (red line)

against numerical simulations (blue points) and the agreement is quite convincing, especially in the bulk. We

compare it with the substituion procedure (black dotted line) which leads to a wider spectrum.

C. Information-Plus-Noise matrix

The derivation of the asymptotic RI estimator for the Information-Plus-Noise model is a bit more

tedious compared to the previous cases but one can follow the same route to find the desired result. We

leave the complete derivation for the reader; the final formula for the corresponding shrinkage function

F3 reads:

F3(λ) = (1− qσ2HM(λ))(λ− σ2(1− q)− 2qσ2λiHM(λ)) + qσ2(1− γM(λ)), (IV.16)

where HM(λ) is as before the Hilbert transform of the probability density ρM, and the function γM is

defined by

γM(λ) = HM(λ)(λ− σ2(1− q)) + qσ2λ(π2ρ2
M(λ)−H2

M(λ)).

If we consider the trivial case of zero noise (i.e. σ = 0), we have by definition that M = C and we indeed

see this in Eq. (IV.16) where the optimal shrinkage formula becomes λ̂i = λi. The other limit that can

be studied without much effort is when the sample size becomes much larger than the number of variable

(i.e. q = 0). In this case, we know that M = C+σ2IN by the law of large number. The optimal shrinkage

(IV.16) gives in that case λ̂i = λi − σ2 which was expected because the observation matrix M is simply

a shift of the signal by a factor σ2. Let us now reconsider the same numerical example of Sec. (III C)

and we apply the same procedure to test the RIE Eq. (IV.16) than the last two sections. We clearly see

in Fig. 9 that the agreement is remarkable.

V. CONCLUSION AND OPEN PROBLEMS

As we recalled in the introduction, RMT is already at the heart of many significant contributions

when it comes to reconstructing a true signal matrix C of large dimension from a noisy measurement.
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FIG. 9: Eigenvalues according to the optimal cleaning formula (IV.16) as a function of the noisy observed

eigenvalues λ with the same setting than in Sec. (III C). We compare the estimator (IV.16) (red line) against

numerical simulations coming from a single sample with N = 500 (blue points), and the agreement is excellent.

In this paper, we have revisited this statistical problem and considered the so-called oracle estimators

which is optimal with respect to the Euclidean norm. In particular, we have established the global

resolvent law for three distinct ensembles of random matrices that embrace well-known models like the

deformed Wigner or the sample covariance matrix. These results on the asymptotic convergence have two

important applications: (i) they allow us to find exact results on the overlap between the eigenvectors of

the signal matrix with the corrupted ones; (ii) most importantly, they lead to the ‘miracle’ which allows

the oracle estimator to be expressed without any knowledge of the signal C in the large N limit. This

last observation, that generalizes the work of Ledoit and Péché [8], should be of particular interest in

practical cases.

Although our computations are based on the non-rigorous Replica method, the comparison between our

theoretical formulas and empirical simulations demonstrates the robustness of each proposed estimator.

Hence, one can certainly think of possible extensions of this work based on the same method. For instance,

a natural extension for our free additive perturbation model would be given by

M = C +OqBO
†
q (V.1)

where the law of the matrix Oq ∈ O(N) interpolates between the Haar measure on the Orthogonal group

O(N) when q = 0 and a given measure on the permutation group when q = +∞. Differently said, M

interpolates between the free and the classical addition. A natural prescription would be to imagine that

Oq is the result of Biane’s Brownian motion [35] on O(N). Another natural possibility is to assume that

Oq is distributed according to the probability measure with the Harish-Chandra-Itzykson-Zuber (HCIZ)

weight [36], [37]:

Pq(dO) ∝ exp
[
qNTrCOBO†

]
dO (V.2)

which has the right limits when q → 0 (Haar measure on the orthogonal group) and q →∞ (deterministic

measure rearranging the spectrum of B in non-increasing order). Hence, considering a replica method

for this specific case might give us access to the global law of the resolvent of M which should enable
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us to express the correlation function of angular integrals, leading to an alternative expression of the

Morosov-Shatashvili formula ([38], [39]) expressed in terms of the free energy of HCIZ integrals.

We emphasize that the proposed estimators are optimal (in the L2 norm sense) when the dimension of

the problem becomes very large and under no particular prior beliefs on the eigenvector structure of the

true matrix C. However, it happens in practice that one could have a prior structure on the eigenvectors

of C (factor models), and it would be interesting to see how can we rewrite our problem in a non-RI

framework. This natural extension is left for future work.

As a challenging open problem, we think it would be very interesting to extend the results obtained

here for the bulk eigenvalues to the spiked eigenvalues. To solve this problem, one would need to compute

the asymptotic overlaps between the perturbed outlier eigenvectors with the non-perturbed eigenvectors

(the corresponding outlier one and the bulk eigenvectors). This question appears to be rather difficult

and very few results are available at the moment of writing this paper (to the best of our knowledge). The

case of the Gaussian matrix with an external source has been investigated in [10] where one can find the

overlaps between the non-perturbed eigenvector associated to the spike and the perturbed eigenvectors

(isolated or in the bulk). This solves only partially the problem here as one should compute the “dual”

overlaps, i.e. projecting the perturbed spike state onto the non-perturbed states (and not the other way

around as in [10]). The main component between the perturbed or non-perturbed spikes is known from

[10]. Let us mention that the method used in [10] permits one to handle the information plus noise matrix

model as well, using the Bru process introduced in [40]. The case of isotropic covariance matrices has also

been considered in [41] where the authors obtained precise delocalization bounds on the overlaps between

the non-perturbed spiked eigenvectors and the perturbed bulk eigenvectors in a universal framework but

do not compute the limiting explicit value of those mean square overlaps. To the best of our knowledge,

the asymptotic of the dual overlaps between the outlier perturbed eigenvectors and the non-perturbed

bulk eigenvectors have not yet been obtained in this case.

Finally, we established a connexion between our work with some famous result of Bayesian statistics.

For instance, we found out that our results generalize the Wiener filter [32] (additive case) but also the lin-

ear shrinkage [33, 42] (multiplicative case), and both have encountered many successes in practical cases.

Moreover, the Bayesian theory has found several applications in modern statistical analysis, especially

because the large amount of data may allow one to identify a pattern in the data which could be used

as a prior. We therefore believe that this work could be the starting point of a Bayesian random matrix

theory by introducing a notion of prior distribution on the signal C which is consistently estimated from

the data. Indeed, even with this slight change of point of view, the mechanism presented here provides

the optimal way to clean a large class of noisy measurement such as very large covariance matrices [43].
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Appendix A: Reminder on transforms in RMT

We give in this first appendix a short reminder on the different transforms that are useful in the study

of the statistics of eigenvalues in RMT due to their link with free probability theory (see e.g. [44] or [45]

for a review). We recall that the resolvent of M is defined by:

GM(z) := (zIN −M)−1, (A.1)

and the Stieltjes (or sometimes Cauchy) transform is the normalized trace of the Resolvent:

GM(z) :=
1

N
TrGM(z) =

1

N

∑
k=1

1

z − λk
,

∼
N→∞

∫
dλρM(λ)

z − λ
. (A.2)

The Stieltjes transform can be interpreted as the average law and is very convenient in order to describe

the convergence of the eigenvalues density ρM. If we set z = λ− iη and take the limit η → 0, we have in

the large N limit

GM(λi − iη) = P.V.

∫
dλ′ρM(λ′)

λ− λ′
+ iπρM(λ)

where the real part is often called the Hilbert transform HM(λ) and the imaginary part leads to the

eigenvalues density.

When we consider the case of adding two random matrices that are (asymptotically) free with each

other, it is suitable to introduce the functional inverse of the Stieltjes transform known as the Blue

transform

BM(GM(z)) = z. (A.3)

This allows us to define the so-called R-transform

RM(z) := BM(z)− 1

z
, (A.4)

which can be seen as the analogue in RMT of the logarithm of the Fourier transform for free additive

convolution. More precisely, if A and B are two N×N independent invariant symmetric random matrices,

then in the large N limit, the spectral measure of M = A + B is given by

RM(z) = RA(z) +RB(z), (A.5)

known as the free addition formula [16]. In this case, we note by ρA�B the eigenvalues density of M.

We can do the same for the free multiplicative convolution. In this case, we rather have to define the

so-called T (or sometimes η [3] ) transform given by

TM(z) =

∫
dλρM(λ)λ

z − λ
≡ zGM(z)− 1, (A.6)

which can be seen as the moment generating function of M. The S-transform of M is then defined as

SM(z) :=
z + 1

zT−1
M (z)

(A.7)

where T−1
M (z) is the functional inverse of the T -transform. Before showing why the S-transform is

important in RMT, one has to be careful about the notion of product of free matrices. Indeed, if we

reconsider the two N×N independent symmetric random matrices A and B, the product AB is in general
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not self-adjoint even if A and B are self-adjoint. However, if A is positive definite, then the product√
AB
√
A makes sense and share the same moments than the product AB. We can thus study the

spectral measure of M =
√
AB
√
A in order to get the distribution of the free multiplicative convolution

ρA�B. The result, first obtained in [16], reads:

SA�B(z) := SM(z) = SA(z)SB(z). (A.8)

The S-transform is therefore the analogue of the Fourier transform for free multiplicative convolution.

Appendix B: Derivation of the global law estimate

1. The replica method

The starting point of our approach is to rewrite the entries of the resolvent GM(z) by the Gaussian

integral representation of an inverse matrix

GM(z)i,j =

∫ (∏N
k=1 dηk

)
ηiηj exp

{
− 1

2

∑N
k,l=1 ηk(zδk,l −Mk,l)ηl

}
∫ (∏N

k=1 dηk

)
exp

{
− 1

2

∑N
k,l=1 ηk(zδk,l −Mk,l)ηl

} . (B.1)

We recall that the claim is that for a complex z not too close to the real axis, we expect the resolvent to

be self-averaging in the large N limit, that is to say independent of the specific realization of the matrix

itself. Therefore we can study the resolvent GM(z) through its ensemble average (denoted by 〈·〉 in the

following) given by:

〈GM(z)i,j〉 =

〈
1

Z

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδk,l −Mk,l)ηl


〉
, (B.2)

where Z is the partition function, i.e. the denominator in Eq. (B.1). The computation of the average

value is highly non trivial in the general case. The replica method tells us that the expectation value can

be handled thanks to the following identity

〈GM(z)i,j〉 = lim
n→0

〈
Zn−1

∫ ( N∏
k=1

dηk

)
ηiηj exp

−1

2

N∑
k,l=1

ηk(zδk,l −Mk,l)ηl


〉

= lim
n→0

∫ ( N∏
k=1

n∏
α=1

dηαk

)
ηiηj

〈
exp

−1

2

n∑
α=1

N∑
k,l=1

ηαk (zδk,l −Mk,l)η
α
l


〉
. (B.3)

We have thus transformed our problem to the computation of n replicas of the initial system (B.1). So

when we have computed the average value in (B.2), it suffices to perform an analytical continuation of

the result to real values of n and finally takes the limit n → 0. The main concern of this non-rigorous

approach is that we assume that the analytical continuation can be done with only n different set of

points which could lead to uncontrolled approximation in some cases [46].

2. Free additive noise

We consider a model of the form

M = C +OBO†
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where B is a fixed matrix with eigenvalues b1 > b2 > · · · > bN with spectral ρB and O is a random

matrix chosen in the Orthogonal group O(N) according to the Haar measure. Clearly, the noise term

is invariant under rotation so that we expect the resolvent of M to be in the same basis than C. We

therefore set without loss of generality that C is diagonal. In order to derive the global law estimate for

the resolvent of the matrix M, we have to consider the ensemble average value of the resolvent over the

Haar measure for the O(N) group, which can be written as follow

〈GM(z)i,j〉 =

∫ ( n∏
α=1

N∏
k=1

dηαk

)
ηiηj

n∏
α=1

e−
1
2

∑N
k=1(ηαk )2(z−ck)

〈
e−

1
2

∑N
k,l=1 η

α
k (OBO†)k,lη

α
l

〉
O
. (B.4)

The evaluation of the later equation can be done straightforwardly if we set the measure dO to be a flat

measure constrained to the fact that OO† = IN , or equivalently said:

DO ∝
N∏

i,j=1

dOi,j

N∏
i,j=1

δ

(∑
k

Oi,kOj,k − δi,j

)

where δ(·) is the Dirac delta function and δi,j is Kronecker delta. In the case where n is finite (and

independent of N), one can notice that Eq. (B.4) is the Orthogonal low-rank version of the Harish-

Chandra-Itzykson-Zuber integrals ([36], [37]). The result is known for all symmetry groups ([47, 48] or

[49] for a more rigorous derivation), and this reads for the rank-n case∫
DO exp

[
Tr

(
1

2

n∑
α=1

ηα(ηα)†OBO†

)]
= exp

[
N

2

n∑
α=1

WB

(
(ηα)†ηα

)]
, (B.5)

with WB the primitive of the R-transform of B. The computation of the resolvent (B.4) becomes:

〈GM(z)i,j〉 =

∫ ( N∏
k=1

dηk

)
ηiηj exp

{
N

2

n∑
α=1

[
WB

(
(ηα)†ηα

)
− 1

2

N∑
k=1

(ηαk )2(z − ck)

]}
,

where we have introduced a Lagrange multiplier pα = 1
N (ηα)†ηα which gives using Fourier transform

(renaming ζα = 2iζα/N)

〈GM(z)i,j〉 ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
exp

{
N

2

n∑
α=1

[WB(pα) + pαζα]

}

×
∫ ( n∏

α=1

N∏
k=1

dηαk

)
ηiηj exp

{
−1

2

n∑
α=1

N∑
k=1

(ηαk )2(z + ζ − ck)

}
.

This additional constraint allows one to retrieve a Gaussian integral over the {ηj} which can be computed

exactly. Ignoring normalization terms, we obtain

〈GM(z)i,j〉 ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
δi,j

z + σζα − ci
exp

{
−Nn

2
F0(pα, ζα)

}
where the ‘free energy’ F0 is given by

F0(p, ζ) =
1

Nn

n∑
α=1

[
N∑
k=1

log(z + ζα − ck)−WB(pα)− pαζα
]
. (B.6)

In the large N limit, the integral can be evaluated by considering the saddle-point of the free energy F0

as the other term is obviously sub-leading. We now use the replica symmetric ansatz that tells us if the
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free energy is invariant under the action of the symmetry group O(N), then we expect a saddle-point

which is also invariant. This implies that we have at the saddle-point

pα = p and ζα = ζ, ∀α ∈ {1, . . . , n}, (B.7)

and hence, we have to solve the following set of equations:{
ζ∗ = −RB(p)

p∗ = GC(z + ζ).

The trick is to see that we can get rid off one variable by taking the normalized trace of the (average)

resolvent which gives the following relation for the Stieltjes transform: GM(z) = GC(z − RB(p∗)) = p∗,

that is to say

GM(z) = GC (z −RB (GM(z))) . (B.8)

In conclusion, by taking the limit n→ 0, we have obtained the following global law estimate

〈GM(z)i,j〉 = (Z(z)IN −C)−1
i,i δi,j (B.9)

with

Z(z) = z −RB (GM(z)) , (B.10)

which are exactly the result stated in Eq. (III.2) and (III.3).

3. Free multiplicative noise

Let us set the measurement matrix M as:

M =
√
COBO†

√
C (B.11)

where O is still a rotation matrix over the Orthogonal group, C is a positive definite matrix and B is

such that TrB 6= 0. Note that we can assume without loss of generality that C is diagonal because the

argument of the previous subsection still applies. The replica method allows us to write the entries of

the resolvent of M as follow

〈GM(z)i,j〉 =

∫ ( n∏
α=1

N∏
k=1

dηαk

)
ηiηje

− z2
∑n
α=1

∑N
k=1(ηαk )2

〈
e

1
2

∑N
k,l=1

∑n
α=1 η

α
k (
√
COBO†

√
C)k,lη

α
l

〉
O
. (B.12)

We can notice that the matrix
∑n
α=1

(√
C ηα

)(√
C ηα

)†
is a symmetric rank-n matrix, with n finite and

independent of N . Therefore, the expectation over the Haar measure still leads to a rank-n Orthogonal

version of HCIZ integral, and the result reads〈
exp

1

2

N∑
k,l=1

n∑
α=1

ηαk (
√
COBO†

√
C)k,lη

α
l


〉
O

= exp

[
N

2

n∑
α=1

WB

(
1

N

N∑
i=1

(ηαi )2ci

)]
. (B.13)

As in the free addition case, let us defined the auxiliary variable pα = 1
N

∑N
i=1(ηαi )2ci that we enforce by

a Dirac delta function. This allows us to get a Gaussian integral over the {ηαk } that yields

〈GM(z)i,j〉 ∝
∫ ∫ ( n∏

α=1

dpαdζα

)
δi,j

z − ζci
exp

{
Nn

2
F0(pα, ζα)

}
(B.14)
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where the free energy is given by

F0(pα, ζα) =
1

n

n∑
α=1

[
1

N

N∑
k=1

log(z − ζαck) + ζαpα −WB(pα)

]
. (B.15)

We now assume that the saddle-point solution can be computed using the replica symmetry ansatz

presented in the previous section, so that the free energy becomes

F0(pα, ζα) ≡ F0(p, ζ) =
1

N

N∑
k=1

log(z − ζck) + ζp−WB(p). (B.16)

We first consider the derivative w.r.t. p which leads to

ζ∗ = RB(p). (B.17)

The other derivative gives

p∗ =
TC

(
z

RB(p∗)

)
RB(p∗)

. (B.18)

Hence, we see that the resolvent is given in the large N limit and the limit n→ 0 by

〈GM(z)i,j〉 =
δi,j

z −RB(p∗)ci
. (B.19)

We can find a genuine simplification of the last expression using the connexion with the free multiplication

convolution. By taking the normalized trace of GM(z), we see that we have

zGM(z) = ZGC(Z), with Z =
z

RB(p∗)
, (B.20)

which can be easily rewrite as

TM(z) = TC(Z).

Let us define x = TM(z) = TC(Z) which implies that p∗ = x/RB(p∗). We recall that we aim to prove

that we indeed get the free multiplicative convolution in the large N limit. Hence, we rewrite the last

equation as

zTM(z) = ZTC(Z)RB(p∗).

It is trivial to see that putting x in this latter expression yields xT−1
M (x) = xT−1

C (x)RB(p∗), and by

definition of the S-transform, we have

SM(x) = SC(x)
1

RB(p∗)
. (B.21)

In order to retrieve the desire result, we use the following relation

1

RB(p∗)
= SB(p∗RB(p∗)), (B.22)

which comes from the very definition of the S-transform of B. But recalling that p∗ = x/RB(p∗), we

conclude that the spectral density of M is given by the free multiplication

SM(x) = SC(x)SB(x), (B.23)
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as expected and it proves that the replica symmetry ansatz holds in this model. So, going back to the

resolvent, we can characterize its large N behaviour by a deterministic quantity which reads:

〈GM(z)i,j〉 =
δi,j

z − ci
SB(TM(z))

. (B.24)

where we have used the definition of x and the relation (B.22). All in all, the global law of the resolvent

of M in the case of the product of free matrices C and B is given by

z 〈GM(z)i,j〉 = δi,jZ(z) (Z(z)− ci)−1
, with Z = zSB(zGM(z)− 1) (B.25)

which is exactly the stated in Eq. (III.8).

4. Information-Plus-Noise matrix

The computation of the global law estimate for this model is pretty similar to the sample covariance

[22]. The noisy measurement matrix is given by

M =
1

T
(A + σX)(A + σX)†

with A a fixed N × T matrix such that T−1AA† = C. As we posit that X is a Gaussian matrix, we

can work in the basis where C is once again diagonal. Moreover, we can in fact show that interchanging

the integral and the average leads to the same result. We hence consider directly the annealed average

in order to lighten the notations. Let us compute

〈GM(z)i,j〉 =

∫ ( N∏
k=1

dηk

)
ηiηje

− z2
∑N
k=1 η

2
k

〈
e

1
2T

∑N
k,l=1

∑T
t=1 σ

2
t ηkc

1/2
k Yk,tYl,tc

1/2
l ηl

〉
,

where we have defined Yt := At + σXt which is still a Gaussian vector. One can readily compute the

average value over the measure of Y to find〈
exp

 1

2T

N∑
k,l=1

T∑
t=1

σ2
t ηkc

1/2
k Yk,tYl,tc

1/2
l ηl


〉
∝
(

1− σ2

T
η†η

)−T2
exp

{
1

2
(1− σ2

T
η†η)−1

N∑
k=1

ckη
2
k

}
,

where we have omitted all constants terms and used Sherman-Morrison formula in the exponential term.

Rewriting p = σ2T−1η†η that we enforced by a Dirac delta function, we can therefore compute the

integral over {ηk} to find

〈GM(z)i,j〉 =

∫
dp

∫
dζ

δi,j
z − qζσ2 − ci

1−p∗
exp

{
−N

2
F0(p, ζ)

}
,

and we can once again compute the integral in the large N limit by performing the saddle-point of the

following free energy

F0(p, ξ) =
1− q
q

log(1− p) + pξ +
1

N

N∑
k=1

log
[
(z − qσ2ξ)(1− p)− ck

]
. (B.26)

The derivation over ξ gives the following equation p∗ = qσ2(1 − p∗)GC

(
(z − qζσ2)(1− p∗)

)
, and by

taking the normalized trace of the resolvent, we see that we have GM(z) = p∗

qσ2 . The other derivative

leads to ξ∗ = 1−q
q + zGM(z). Therefore, the global law estimate reads:

〈GM(z)i,j〉 = δi,j
(
(zZ(z)− σ2(1− q))− Z(z)−1C

)−1

i,i
, (B.27)
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with

Z(z) = 1− qσ2GM(z). (B.28)

This is exactly the result announced in Eqs. (III.22, III.23) and in [30], showing that considering directly

the annealed average is correct.
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